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Abstract Glycosylation is one of the most important

post-modification processes of small molecules and enables

the parent molecule to have increased solubility, stability,

and bioactivity. Enzyme-based glycosylation has achieved

significant progress due to advances in protein engineering,

DNA recombinant techniques, exploitation of biosynthetic

gene clusters of natural products, and computer-based

modeling programs. Our report summarizes glycosylation

data that have been published within the past five years to

provide an overall review of current progress. We also

present the future trends and perspectives for glycosylation.

Keywords Glycosylation � Enzyme � Protein

engineering � Natural product � Glycosyltransferase �
Glycosidase

Introduction

Biocatalysts for enzymatic synthesis of small

glycosides

Glycosides include several important classes of glycosyl-

ated bioactive compound derivatives of hormones, alka-

loids, flavonoids, antibiotics, and sweeteners. Attachment

of a sugar moiety to the respective aglycon leads to a

dramatic change in activity of parent molecules that is

either crucial for their physiochemical properties or that

enhances pharmacokinetic parameters. In particular, gly-

cosides are more water soluble than the corresponding

aglycons and increasing hydrophilicity results in increased

activity and ease of passage through the cell membrane.

Glycosidases

Glycosidases (EC 3.2.1.-) are a group of biologically

important carbohydrate-processing enzymes that catalyze

the hydrolysis of glycosidic bonds to release an oligosac-

charide and a monosaccharide. These enzymes are widely

distributed in organisms such as archaea, bacteria, fungi,

animals, and plants. Glycosidases play essential roles in

many processes such as carbohydrate-degraded amylase,

cellulose, or glucoamylase; in pathogenetic mechanisms

such as with neuraminidases, or as anti-bacterial agents in

lysozymes [31, 53].

Glycosidases can be classified by their action on sub-

strates such as endo- or exo-enzymes. However, the

sequence-based classification is the most popular and

applicable method in which about 132 families have been

identified using sequence and folding similarities as well as

three-dimensional structure (www.CAZy.com). This

approach is advantageous, as it provides the relationship

between structure and function of the enzyme, reveals the

evolutionary relationships between enzymes, and predicts

the mechanism of action of newly isolated glycosidases.

For example, a new cellulase in Armillaria gemina has

been identified as endo b-1,4-glucanase or a member of

glycosidase 61 and has been investigated for converting

lignocellulosic biomass to biofuels and chemicals [57].

Glycosidases catalyze three types of reactions including

hydrolysis, reverse hydrolysis and trans-glycosylation [5, 147],

and glycosides are the products of the latter two reactions.

Reserved hydrolysis is a thermodynamically-controlled
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reaction in which the equilibrium is shifted towards synthesis

of a glycoside from a carbohydrate and an alcohol by addition

of co-solvent to reduce water activity, enhancing the substrate

concentrations and the products of reaction being taken out

simultaneously, if possible [49, 127]. The rate of the reaction

increases if water is removed from the system. Trans-glyco-

sylation is a kinetically controlled approach in which the

enzyme transfers a glycosyl residue from the donor to acceptor,

and a (mono)saccharide is the leaving group.

Mechanism of glycosidases

Glycosidases catalyze via two mechanisms in which the

configuration of the anomeric carbon of the product is

inverted (a ? b or b ? a) or is retained (a ? a or b ? b),

namely, an inversion and retention mechanism, respectively.

The typical retaining glycosidases require acid/base and

nucleophilic residues and catalyze the reaction via a double-

displacement mechanism. But, inverting enzymes only

require a catalytic acid and base residues, and the reaction

proceeds though single-displacement. Both mechanisms

involve oxacarbenium-ion-like transition states and a pair of

carboxylic acids at the active site [132] (Fig. 1). Several

glycosidase families do not follow these classic mechanisms,

as they lack typical catalytic carboxylate base/nucleophile

residues [27, 48]. A variety of alternative mechanisms

function such as substrate-assisted catalysis, which is a net-

work of several residues or exogenous nucleophiles [167].

Glycosyltransferases

Glycosylation is usually carried out by glycosyltransferases

(GTs) (EC 2.4.1.-), which transfer glycosidic residues from

NDP-sugar to the respective aglycon. Aglycons are highly

diverse and include carbohydrates, lipids, steroids, poly-

phenols, and proteins. The GTs are classified as GT-A and

GT-B using the Rossmann fold, a classic structural motif of

the nucleotide-binding domain as a basic unit to identify

structure. Despite containing a similar active-site domain,

two of these folds have no significant sequence identity

[90]. The GT-A includes a central b-sheet surrounded by a-

helices and form a type of b/a/b combination, similar to the

Rossmann fold. The spsA (nucleotide-diphospho-sugar

transferase) enzyme from Bacillus subtilis is a typical

example of this class [16]. The GT-B fold consists of two

separate Rossmann-like fold domains. A linker connects

two such domains and a catalytic site is located between

the two less tightly associated domains. In this enzyme

class, the N-terminal domain contains a binding site for the

acceptor, while the nucleotide binding site is believed to be

located in the C-terminal part [30, 181]. In addition, a third

enzyme fold named the GT-C superfamily has been

proposed based on a BLAST iterative sequence analysis.

This class is characterized by a modified DxD signature in

the first extracellular loop and includes integral membrane

glycosyltransferases [90, 95].

Glycosyltransferase mechanism

The GT-A and the GT-B are also classified as inverting and

retaining enzymes with mechanisms similar to those of

glycosidases. Almost all predicted GT-C enzymes are in the

inverted glycosyltransferase family [90]. These enzymes are

usually metal ion-dependent, with metals such as magne-

sium (Mg2?) or manganese (Mn?2) found in the active site

and acting as a Lewis acid by binding to the (di) phosphate

leaving group. Inverting GTs catalyze via a single dis-

placement mechanism with nucleophilic attack by the

acceptor at the anomeric carbon (C1) of the sugar (Fig. 2).

Several typical methods for biological synthesis

of glycosides

High-throughput screening for directed evolution of GTs

A cell-based assay for ST (sialyltransferases) activity was

developed using fluorescence-activated cell sorting. Prod-

uct formation is detected by direct correlation to cell fluo-

rescence using a designed fluorescently-labeled sugar and

selectively trapping the sialylated fluorescent product in the

cell. Based on this method, Aharoni et al. [1] reported

screening a library of[106 ST mutants and found a variant

with extremely high activity (400-fold increase) to a variety

of labeled sugars, including thiosugars, resulting in meta-

bolically stable glycosides. A modification of this method

was introduced using a two-color screening protocol to

minimize the probability of false-positive mutants and to

successfully apply b-1,3-galactosyltransferase CgtB for

synthesis of important therapeutic glycosphingolipids or

asialo G(M1) oligosaccharides as variants. This method is

promising for screening almost all GT activities and pro-

motes engineering of glycosyltransferases [183].

In vivo glyco-randomization of small molecules

Escherichia coli and Streptomyces are often used as hosts

for metabolic engineering of a biosynthetic pathway and as

recombinant plasmids harboring genes of interest for gly-

cosylation of small molecules and drugs. Two prototype

E. coli strains, containing a versatile GT (OleD-ASP,

TDP16) and endogenous sugar gene cassettes, were pre-

pared for producing the respective glycosides. Further-

more, diversification of the host-based sugar biosynthetic

pathway using promiscuous anomeric kinase (GalK
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M173L/Y371H), engineered flexible nucleotidyltransferase

(RmlA L89T), and GT–TDP16 resulted in a prototype

E. coli host that can produce a series of novel glycosides by

feeding exogenous aglycon such as flavonoids, amino-

coumarin, or polyene [176]. Another typical example of

using Streptomyces as a host was reported by Yoon et al. A

S. venezuelae mutant carrying a plasmid containing dif-

ferent deoxysugar gene cassettes, a flexible GT–AknS and

AvrE, efficiently supported biosynthesis of TDP-4-epi-L-

daunosamine, and was used for improved production of

epirubicin. Furthermore, seven novel rhodomycin D mol-

ecules were isolated from a series of products by inserting a

variety of deoxysugar gene cassettes into the host. These

exemplify the power of combinatorial biosynthesis to

generate new small molecules as well as drug glycosides

[43]. Similar studies can be found for macropolyketide [44,

45] and anthracycline-like polyketides [109].

Development of highly organic tolerant glycosidases

An enzyme has been isolated from a hydrophilic organic

solvent-tolerant organism, Arthrobacter nicotianae XM6. As

all flavonoids can be dissolved in DMSO up to a DMSO

concentration of 25 %, tolerant enzymes exhibit high catalyst

activity for glycosylation of flavones, glucosides, and puerarin

both in vitro and in vivo to produce puerarin di- and

(A)

(B)

(C)

Fig. 1 Mechanisms of different types of glycosidases. a Inverting (b ? a), b retaining (b ? b) and c modified retaining (double-displacement)

or substrate-assisted catalysis, for example, b-N-acetylhexosaminidases [8]
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tri-glucosides [180]. A similar approach to enzyme develop-

ment can be used as a catalyst for quercetin [172] or alkyl [129].

In vitro glycol randomization and high-throughput

screening

Some GTs catalyze not only the glycosylation of substrates

but also perform a reversible reaction to produce NDP-sugars

and aglycons. In an effort to drive the equilibrium GT-cat-

alyzed reaction, Thorson et al., synthesized a series of simple

glycosides as donors for promiscuous glycosyltransferase

OleD mutants. Using high throughput screening, they found

the most active glycoside donor and respective OleD mutant,

and the reaction was indicated by a colorimetric assay. By

combining a reversible reaction to produce an NDP-sugar

(OleD mutant 1) and a glycosidic donor for glycosylation of

other substrates (in the presence of OleD mutant 2), they

succeeded in synthesizing the un-natural glycosides [35].

Synthesis of glycosides by engineered glycosidase

via transglycosylation

Enzymatic glycosylation of a nucleoside analog using

glycosidase has a long history and has gained much

interest. For example, E. coli b-galactosidase, using gal-

actose as a sugar donor to galactosylate nucleosides and

acrylic nucleoside analogues, follows a two step reaction.

First, the glycosidic bond of galactose is cleared by the

enzyme, and an enzyme-galactose complex forms. Second,

the hydroxyl group of the acceptor molecule breaks the

complex resulting in the formation of new glycosides and

leaves the enzyme active site. This mechanism leads to

retention of the glycosidic configuration, so the product is

always in the b-configuration [7]. Trans-glycosylation

activity of Serratia proteamaculans chitinase D improved

significantly through a point mutation. Various mutants

such as M226A, Y228A, F125A, S116G, F64W, G119S,

R284A, and W247A showed almost double the concen-

tration of transglycosylation products such as chitopentaose

and chitohexaose in comparison to that of the parent

molecule using chitotetraose as the substrate [99]. Simi-

larly, Thermotoga neapolitana b-glucosidase activity

towards arbutin glycosylation was upgraded by site-direc-

ted mutagenesis with the N291T and N219T/F412S vari-

ants compared with that of the wild-type enzyme. The

N291T shows replaced regioselectivity as well as an

increase in the trans-glycosylation product [23]. These data

reveal that Asn-291 is highly involved in the catalytic

mechanism by controlling the transglycosylation reaction.

Recent progress in biological synthesis of small

molecule glycosides

Flavonoids and stilbenoid glycosides

Flavonoids are ubiquitous secondary metabolites in vas-

cular plants. Most flavonoids exist in a glycosylated form

(A)

(B)

Fig. 2 Reaction mechanism of glycosyltransferases. a Invertion.

Inverting GTs-1: general base (B)-catalyzed SN2 attack at C1 of the

NDP-sugar donor by the acceptor forms an oxocarbenium-type

transition state leading to the inversion of stereochemistry at the

anomeric carbon. b Retention. Retaining GTs require the double-

displacement mechanism in which the SN2 attack of an active site

nucleophile (Nu) at C1 of the NDP-sugar to form a covalent sugar–

enzyme intermediate, followed by an SN2 attack of the acceptor at C1

to form the glycosidic linkage with retention of anomeric configu-

ration [100]
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in which they show more stability, bioactivity, and solu-

bility than those of their aglycons [88]. Glycosylation of

flavonoids occurs at the hydroxyl group or directly on the

carbon atom of the skeleton. Enzymes are responsible for

the glycosylation of flavonoids including GTs isolated from

plants (Arabidopsis and Withania) or bacteria (Streptomy-

ces, Bacillus, and Streptococcus) or transglycosylation by

glycosidases [21, 103, 143, 144, 153]. Different types of

activated sugars such as NDP-glucose, NDP-xylose, NDP-

glucuronic acid, NDP-galactose, NDP-rhamnose, or NDP-

6-deoxy-allose are recruited as donors for glyco-diversifi-

cation of glycosylated flavonoid derivatives. These com-

pounds are well-known anti-cancer, anti-bacterial, anti-

inflammatory, antioxidant, and neuroprotective inhibiting

agents that have been studied extensively. Structure–

activity relationship studies have discovered many inter-

esting and valuable properties of flavonoids. This is

exemplified by the inhibitory effects of 14 selected flavo-

noids with various structures on the activity of purified

bovine liver cytochrome b5 reductase. The data revealed

that a number of hydroxyl groups in ring B and the car-

bonyl group at C-4 accompanied with the presence of a

double bond enhance activity of the compounds, but

substituting a hydroxyl group at C-3 might reduce its

inhibitory effect [11]. Two glycosides such as isoquercitrin

and hyperin show better protective activity against glyca-

tion-associated diseases than that of their aglycon deriva-

tives [73]. Due to structural properties, flavonoids are

soluble in strong organic solvents such as acetone, meth-

anol, or DMSO, but they have limited water solubility,

which limits travel of flavonoids through cell membranes

as well as oral biotransformation. In addition, flavonoid

glycosides are more stable and bioavailable [87]. Com-

mercial glycosylated flavonoids are available, but they

remain very expensive. The main reason is the low-yield of

particular products and the time involved with plant-based

chemical extraction. Enzymatic production has advantages

such as high regio-specificity and simple optimization for

culture and has become the primary approach to produce

flavonoid glycosides [72, 115]. In addition, applications of

advanced protein engineering and DNA manipulation

techniques such as combinatorial biosynthesis and meta-

bolic engineering allow not only enhanced yields of value-

added compounds but the generation of new high-value

products. Our group has successfully synthesized several

types of glycosides such as flavonol glycosides [115, 143,

144, 162], flavone glucosides [163], and phloretin gluco-

sides [116], and their bioactivities are being tested (data not

shown). Recent information on synthesis of flavonoids and

glycosylation is provided in Table 1 and Figs. 3, 4.

Stilbenoids are hydroxylated derivatives of stilbene, and

their biosynthetic pathway is similar to that of chalcones

[134, 148, 164]. These compounds are widely distributed in

plants and bacteria, and they play critical roles as antiox-

idants [13], inhibit the growth of human colorectal cancer

cells [117], activate the immune system [60] or inhibit viral

neuraminidases [110]. But, stilbenoid compounds such as

resveratrol are less water soluble, limiting their application

in the food processing and pharmaceutical industries.

Glycosylation of stilbenoids is a way to change the prop-

erties of the aglycon such as solubility, permeation, and

bio-availability due to the presence of a sugar moiety. This

is exemplified by resveratrol glucuronoides and sulfates as

major metabolites of human cell metabolism [168, 173].

Trans-resveratrol-3-O-D-glycoside (piceid) exhibits higher

scavenging activity against hydroxyl radicals than that of

resveratrol in vitro [151] (Fig. 5).

Resveratrol is glycosylated by glucosidase via trans-

glycosylation or GTs. Plou et al., reported synthesis of a

series of a-glucosyl derivatives of resveratrol (3,5,40-tri-
hydroxystilbene) by a trans-glycosylation reaction medi-

ated by the cyclodextrin glucanotransferase (CGTase)

using starch as the glucosyl donor. Three groups of glu-

cosylated products were obtained at position 3-OH, 40-OH,

and at both 3-OH and 40-OH [159]. In addition, two trans-

resveratrol-O-b-glucoside products including 40-O-b-glu-

coside and 3-O-b-glucoside were regiospecifically synthe-

sized by a glucosyltransferase (PaGT3) of Phytolacca

americana (PaGT3) and expressed in E. coli. Molecular

modeling analysis and mutagenesis of this protein revealed

that the His-20 residue might perform a catalytically

essential function [113]. Furthermore, those authors also

found that the PaGT2 enzyme is a PaGT3 isoenzyme and

both were successfully used to catalyzed stereo- and regio-

selective monoglucosylation of 3,5,30,40-tetrahydroxy-

trans-stilbene to yield 3,5,30,40-tetrahydroxy-trans-stil-

bene-40-O-b-D-glucopyranoside [55]. Alternatively, gly-

cosylated trans-resveratrol is produced by plant-culture

cells of Catharanthus roseus, Strophanthus gratus, and

Ipomoea batatas [54].

Ginsenosides

Ginsenosides consist of a dammarane core structure with

sugar moieties attached by a glycosidic bond at C-3 and

C-6 of the skeleton. Several typical sugars occur in gin-

senosides such as glucose, arabinose, and galactose

(Fig. 6). These compounds are the main components in

ginseng, and more than 180 types of naturally ginsenosides

are known [25]). The ginseng root is a very valuable herb

(Panax gingseng, Chinese medicine) due to its ginsenoside

content, which possesses many physiological and phar-

macological activities such as anti-cancer, anti-inflamma-

tory and anti-diabetic effects [19, 22]. Ginsenosides are

divided into two major groups including 20(S)-proto-

panaxadiol and 20(S)-protopanaxatriol. Several high-content

J Ind Microbiol Biotechnol (2013) 40:1329–1356 1333

123



T
a

b
le

1
E

n
zy

m
at

ic
sy

n
th

es
is

o
f

fl
av

o
n

o
id

-
an

d
st

il
b

en
o

id
g

ly
co

si
d

es

E
n
zy

m
e

G
en

e

si
ze

(b
p
)

S
tr

ai
n
s

A
cc

ep
to

r/
d
o
n

o
r

P
ro

d
u
ct

s
M

W

(k
D

a)

p
H

T
em

(�
C

)

Y
ie

ld
o
f

p
ro

d
u
ct

(m
g
/L

)
o
r

co
n
v
er

si
o
n

ra
te

(%
)

S
y
n
th

et
ic

m
et

h
o
d
s

R
ef

er
en

ce
s

D
ex

tr
an

su
cr

as
e

L
eu

co
n
o
st

o
cm

es
en

te
ro

id
es

B
-5

1
2
F

M
C

M

K
ae

m
p
fe

ro
l/

su
cr

o
se

K
ae

m
p
fe

ro
l-

3
-O

-b
- D

-n
ig

er
o
si

d
e,

k
ae

m
p
fe

ro
l-

3
-O

-b
- D

-i
so

m
al

to
si

d
e

5
.2

2
8

2
1
.8

m
g

In
v
it

ro
[7

1
]

D
ex

tr
an

su
cr

as
e

8
,5

1
1

L
eu

co
n
o
st

o
c

m
es

en
te

ro
id

es

B
-1

2
9
9
C

B
4

A
m

p
el

o
p
si

/s
u
cr

o
se

A
m

p
el

o
p
si

n
-4
0 -

O
-a

-D
-

g
lu

co
p
y
ra

n
o
si

d
e

3
1
3
.3

5
.2

2
8

3
,4

0
0

m
g

In
v
it

ro
[1

7
9

]

D
ex

tr
an

su
cr

as
e

(L
L

D
ex

T
,

5
1
2
F

D
ex

T
,

S
M

D
ex

T
)

4
,5

0
3

L
eu

co
n
o
st

o
c

la
ct

is
E

G
0
0
1
,

L
eu

co
n
o
st

o
c

m
es

en
te

ro
id

es
B

-5
1
2
F

D
ex

T
,

S
tr

ep
to

co
cc

u
s

m
u
ta

n
s

D
ex

T
(S

M
D

ex
T

)

P
u
er

ar
in

/s
u
cr

o
se

a
- D

-g
lu

co
sy

l
(1

?
6
)-

p
u
er

ar
in

,
a-

D
-

is
o
m

al
to

sy
l

(1
?

6
)-

p
u
er

ar
in

1
6
5

5
.0

–
5
.2

2
8
–
3
0

1
4
,5

0
0

m
g

In
v
it

ro
[7

8
,

8
3

]

a
-A

m
y
la

se
1
,3

8
9

T
ri

ch
o
d
er

m
a

vi
ri

d
e

JC
M

2
2
4
5
2

(?
)-

ca
te

ch
in

an
d

(-
)-

ep
ig

al
lo

ca
te

ch
in

g
al

la
te

(E
G

C
G

)/
d
ex

tr
in

s
(?

)-
ca

te
ch

in
5
-O

-a
- D

-

g
lu

co
p
y
ra

n
o
si

d
e,

(?
)-

ca
te

ch
in

5
-a

- D
-m

al
to

si
d
e,

(?
)-

ca
te

ch
in

4
0 -

O
-a

-D
-m

al
to

si
d
e,

E
G

C
G

5
-O

-a
- D

-g
lu

co
p
y
ra

n
o
si

d
e,

E
G

C
G

7
-O

-a
- D

-m
al

to
si

d
e

5
.0

4
5
–
5
5

In
v
it

ro
[1

0
7

]

U
G

T
7
8
D

1
1
,3

6
2

A
ra

b
id

o
p
si

s
th

a
li

a
n
a

Q
u
er

ce
ti

n
,

k
ae

m
p
fe

ro
l/

T
D

P
-

rh
am

n
o
se

K
ae

m
p
fe

ro
l

3
-O

-r
h
am

n
o
si

d
e

(1
),

q
u
er

ce
ti

n
3
-O

-r
h
am

n
o
si

d
e

(2
)

3
0

1
5
0

m
g

fo
r

(2
)

an
d

2
0
0

m
g

fo
r

(1
)

In
v
iv

o
[6

9
]

U
G

T
7
8
D

2
1
,3

8
3

A
ra

b
id

o
p
si

s
th

a
li

a
n
a

Q
u
er

ce
ti

n
/U

D
P

-N
-

ac
et

y
lg

lu
co

sa
m

in
e

Q
u
er

ce
ti

n
3
-O

-N
-a

ce
ty

lg
lu

co
sa

m
in

e
3
0

3
8
0

m
g

In
v
iv

o
[7

0
]

U
G

T
7
8
D

1
A

ra
b
id

o
p
si

s
th

a
li

a
n
a

Q
u
er

ce
ti

n
/d

T
D

P
-6

-

d
eo

x
y
ta

lo
se

Q
u
er

ce
ti

n
-3

-O
-6

-d
eo

x
y
ta

lo
si

d
e

3
0

9
8

m
g

In
v
iv

o
[1

8
4

]

Y
ij

C
1
,1

7
9

B
a
ci

ll
u
s

li
n
ch

en
if

o
rm

is
P

h
lo

re
ti

n
/U

D
P

-g
lu

co
se

P
h
lo

re
ti

n
4
0 ,

4
-O

-d
ig

lu
co

si
d
e

(1
),

p
h
lo

re
ti

n
4
,6
0 -

O
-d

ig
lu

co
si

d
e

(2
)

an
d

p
h
lo

re
ti

n
2
0 ,

4
0 ,

4
-O

-

tr
ig

lu
co

si
d
e

(3
)

4
3
.6

7
7
.5

2
5

2
3
.3

%
In

v
it

ro
&

in
v
iv

o

[1
1
6

]

O
le

D
1
,2

4
8

S
tr

ep
to

m
yc

es
a
n
ti

b
io

ti
cu

s
D

ai
d
ze

in
,

fl
av

o
p
ir

id
o
l,

re
sv

er
at

ro
l,

1
0
-h

y
d
ro

x
y
ca

m
p
to

th
ec

in
,

2
-m

et
h
o
x
y
es

tr
ad

io
l/

U
D

P
-

g
lu

co
se

F
la

v
o
p
ir

id
o
l-

(1
),

2
-m

et
h
o
x
y
es

tr
ad

io
l-

(2
),

re
sv

er
at

ro
l-

(3
),

d
ai

d
ze

in
-(

4
),

1
0
-h

y
d
ro

x
y
ca

m
p
to

th
ec

in
(5

)

g
lu

co
si

d
es

8
.0

2
5

4
.9

m
g

o
f

(1
);

1
.2

–
2
.2

m
g

o
f

(3
);

6
m

g
o
f

(5
);

0
.1

–
4

m
g

o
f

(2
);

1
–
5

m
g

o
f

(4
)

in

d
ie

d
fo

rm

In
v
it

ro
[1

8
9

]

U
G

T
7
8
D

1
(*

),

U
G

T
8
9
C

1
(*

*
)

1
,3

0
8

fo
r

(*
);

1
,3

6
2

fo
r

(*
*
)

A
ra

b
id

o
p
si

s
th

a
li

a
n
a

Q
u
er

ce
ti

n
/U

D
P

-g
lu

co
se

,

U
D

P
-r

h
am

n
o
se

Q
u
er

ce
ti

n
3
-O

-g
lu

co
si

d
e-

7
-O

-

rh
am

n
o
si

d
e

(1
),

q
u
er

ce
ti

n
3
,7

-O
-

b
is

rh
am

n
o

si
d
e

(2
)

3
0

6
7

m
g
/L

o
f

(1
);

6
7
.4

m
g
/L

o
f

(2
)

In
v
iv

o
[7

2
]

A
rG

T
3

A
ra

b
id

o
p
si

s
th

a
li

a
n
a

Q
u
er

ce
ti

n
/U

D
P

-x
y
lo

se
Q

u
er

ce
ti

n
-3

-O
-x

y
lo

si
d
e

In
v
iv

o
[1

1
4

]

M
al

to
sy

lt
ra

n
sf

er
as

e
2
,0

8
4

C
a
ld

ic
el

lu
lo

si
ru

p
to

r
b
es

ci
i

D
S

M
6
7
2
5

P
ic

ei
d
/m

al
to

se
D

-m
al

to
sy

l-
(a

-1
,4

)-
p
ic

ei
d

8
0

6
.0

7
0

1
7
,2

0
0

m
g

In
v
it

ro
[1

1
9

]

1334 J Ind Microbiol Biotechnol (2013) 40:1329–1356

123



compounds exist such as ginsenoside Rg3, Rc, and Rb1 and

are usually used as substrates for the enzymatic synthesis of

rare derivatives such as Rd, compound K, Rh2, or F2. This

bioconversion has gained much interest, as the uncommon

ginsenosides show stronger activities (cardioprotective

effects, antioxidative or anti-inflammatory properties) more

than that of their common precursors [24, 170]. Table 2

summarizes updated information on use of the enzymatic

approach for producing ginsenoside derivatives. The success

of the biotransformation method using E. coli as the host may

open up large-scale production of valuable ginsenosides in

the near future.

Cyanogenic glycosides

Cyanogenic glycosides are amino acid-derived secondary

metabolites that play an essential role protecting plants

from insects and other herbivores. These compounds are

significantly distributed in sorghum (Sorghum bicolor),

cassava (Manihot esculenta), and barley (Hordium vulg-

are) [64]. Biosynthesis of cyanogenic glycosides usually

includes three phases in which phases I and II are char-

acterized by cytochrome P450 to convert L-amino acids

into aldoximes and aldoximes into hydroxynitrile, respec-

tively; a UDP-glucosyltransferase in phase III attaches the

glucosidic moiety to the hydroxynitrile acceptor to produce

a cyanogenic glycoside [34]. Many investigations have

demonstrated this concept [61, 84, 141, 142]. The bio-

synthesis of linamarin and lotaustralin has been studied

extensively in cassava by Jorgensen et al. [62], and the

proposed synthesis is shown in Fig. 7.

Vitamin glycosides

Vitamin C glucosides and derivatives

Vitamin C or L-ascorbic acid is an important nutrient for

humans and animals. This compound is a cofactor for

collagen synthesis reactions; therefore, it causes severe

scurvy symptoms, if lacking [166]. The L-ascorbic acid is

also an antioxidant against oxidative stress [114]. How-

ever, vitamin C is an unstable compound in aqueous

solution as it is easily degraded under oxidative conditions,

such as light, metal ions, or heat. Glycosylation by

chemical or biochemical approaches can be used to

enhance stability and activity of vitamin C. As chemical

synthesis of vitamin C glucosides is complicated, enzy-

matic synthesis is the main method. There are several types

of vitamin C glucosides enzymatically produced such as

ascorbic acid-2-, 3-, 5- or 6-O-a-D-glucoside (Fig. 8).

Some types of enzymes such as a-glucosidases [106],

amylase [92], or a-CGTase [102] are used to produce

ascorbic acid glucosides. Immobilized a-CGTase isT
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utilized for continuous production of ascorbic acid 2-O-a-

D-glucoside and the highest yield of target compound is

21 g/L. Such a record is two-fold higher than of free a-

CGTase [186]. Acylation at the C-5 or C-6 position of the

aglycon structure or C-60 at the sugar part is preformed to

improve bioactivity of vitamin C glucosides [156, 157]. A

recent update on vitamin glucosides is listed in Table 3.

Pyridoxine glycosides

Pyridoxine is one of the component of vitamin B6, along

with pyridoxal and pyridoxamine. This compound supports

the balance of hormonal changes in women and aids in the

immune system [67, 175]. Pyridoxine is a light- and heat-

sensitive compound and the glycosylated pyridoxine is less

sensitive than its aglycon [40, 68]. Enzymatic synthesis of

pyridoxine glycosides using b-glucosidase from

sweet almond has been performed and has generated a

series of products (Fig. 9) [14].

a-Tocopherol glucoside

The a-Tocopherol and the tocotrienol are the main com-

ponents of vitamin E; but they are poorly soluble in water,

less stable, and show poor absorbtivity. The major function

of a-tocopherol is as a potent antioxidant, free-radical

Fig. 3 Catechin and ampelopsin glycosides were synthesized by Deinococcus-origined amylosucrase [21] and Leuconostoc-derived

dextransucrase [179]

Fig. 4 Production of puerarin glucosides from Lecoconostoc dex-

transucrase [81] and Arthrobacter b-glucosidase [180]

Fig. 5 Structure of piceid glycoside [118]
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scavenger [177] and to reduce oxidative stress [91]. Gly-

cosylation of this compound may enhance its solubility

leading to changes in bioactivity. Divakar et al. [101]

successfully synthesized glycosylated tocopherols using

the transglycosylation reaction and amyloglucosidase from

Rhizopus mold or b-glucosidase from sweet almond

(Fig. 10) [124].

Glycosylated hydroquinones as skin lightening agents

Due to the inhibitory effect against tyrosinase, an enzyme

that catalyzes the formation and deposition of melanin

pigment, hydroquinone and arbutin (4-hydroxyphenyl-b-D-

glucopyranoside) are used in cosmetics as skin lightening

agents. However, hydroquinones have some side effects

such as skin irritation [58], dermatitis, and atrophy [9].

Arbutin is more water soluble and less harmful compared

to its aglycon and inhibits tyrosinase activity without

affecting its mRNA expression [120]. Enzymatic synthesis

of arbutin glucosides as well as hydroxyphenyl glycosides

has received much interest using microbial enzymes such

as Leuconostoc-derived glucansucrase [105] or oligoxylo-

syl transfer enzyme (OxtA from Bacillus sp. strain KT12)

[20]. Arbutin has been synthesized using an enzymatic

method with hydroquinone and sugars such as maltopen-

taose, starch, or sucrose [105, 152]. Numerous glycosidases

have been characterized that glycosylate hydroquinone

such as amylosucrase [139], b-galactosidase [76], and

levansucrase [65]. The main characteristics of these

enzymes are listed in Table 4 (Fig. 11).

Stevioside and rubusoside

Stevioside and rubusoside are natural sweeteners isolated

from the leaves of Stevia rebaudiana. These compounds

can be used clinically as inhibitors of atherosclerosis by

improving insulin signaling and antioxidant defense in

obese insulin-resistant mice [37], as superior scavengers of

both hydroxyl and superoxide radicals against oxidative

stress [149], or a stimulants for the immune system by

enhancing apoptosis [158]. However, the commercial

products are relatively expensive; therefore, production of

Fig. 6 Biotransformation pathway of ginsenoside via trimming hydrolysis by glycosidases. Glc b-D-glucopyranosyl, Arap a-L-arabinopyranosyl,

Araf a-L-arabinofuranosyl
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these sweeteners has gained much attention through an

enzymatic approach. In addition, as stevioside and ru-

busoside have a slightly bitter aftertaste, many efforts have

concentrated on modifying the structure of stevioside. For

example, a new Aspergillus aculeatus-derived b-glucosi-

dase has been applied for mass production of rubusoside

under optimal conditions of 280 mM stevioside and 16.6

lL of enzyme at pH 5.1 and 63 �C [82]. Similarly, Xia

et al. [169] showed the highest bioconversion of stevioside

to rubusoside of 98.3 %, accompanied by a rubusoside

yield of 91.4 %. Using b-cyclodextrin glucanotransferase

isolated from an alkalophilic strain of Bacillus firmus, two

derivatives of stevioside such as 40-O-a-D-glycosyl stevi-

oside and 400-O-a-D-maltosyl stevioside have been pro-

duced via three different methods including traditional,

ultrasound-, and microwave-assisted reactions [59]. In

addition to the synthesis of stevioside derivatives by the

enzymatic method, a new series of steviosides have been

identified in leaves of Stevia rebaudiana [17, 18]. These

studies may identify corresponding enzymes for post-

modification in the near future (Fig. 12).

Vanillyl glucosides

Vanillyl alcohol is the main component of Gastrodia

elata Blume extract, an herb that has been used for

centuries in Oriental countries. This compound has been

demonstrated as a neuroprotective agent by suppressing

oxidative stress and as an anti-apoptotic agent in toxin-

induced dopaminergic MN9D cells [74]. Vanillyl also

shows anti-angiogenic, anti-inflammatory, and anti-noci-

ceptive activities in mice [63] and suppresses cancer cell

migration and metastasis in animals [94]. Additionally,

vanillin possesses anti-microbial potential by inhibiting

growth of Saccharomyces cerevisiae, Zygosaccharomyces

bailii, and Zygosaccharomyces rouxii, which are associ-

ated with food spoilage [32]. Glycosylation of vanillin

and its derivatives has been a focus due to decreased

toxicity and increased stability, bioactivity, and solubil-

ity. For example, vanillin becomes toxic when it accu-

mulates in the cellular cytoplasm; therefore,

bioconversion of vanillin into vanillin glucoside (less

toxic) enhances the yield of this compound in Schizo-

saccharmyces pombe [4, 10, 46].

Vanillin and 8-nordihydrocapsaicin are glycoslated by

cultured Eucalyptus perriniana cells to generate vanillin-4-

O-b-D-glucopyranoside, 4-O-b-D-glucopyranosylvanillyl

alcohol, 8-nordihydrocapsaicin-4-O-b-D-glucopyranoside,

and 8-nordihydrocapsaicin-4-O-b-D-gentiobioside [136].

Using maltase from S. cerevisiae as a catalyst, a new

glucoside of vanillyl alcohol called 4-hydroxy-3-

methoxybenzyl-a-D-glucopyranoside was synthesized

from vanillyl alcohol and maltose (donor) via a trans-

glycosylation reaction. Under optimal conditions, the

yield of glucoside was 90 mM with no by-product

formed. The compound also showed potent antioxidant

activity against ABTS [2, 20-azinobis-(3-ethyl-ben-

zothiazoline-6-sulfonic acid)] [165] (Fig. 13). In addition,

a vanillyl alcohol isomaltoside has been synthesized in a

second reaction reported by the same group [29]. The

current biological synthesis of vanillin glucosides is

updated in Table 5.

Coumarin and their glycoside derivatives

Coumarins (1,2-benzopyrone), a group of natural products,

are distributed in vanilla grass (Anthoxanthum odoratum),

sweet grass (Hierochloe odorata), and deer tongue (Pani-

cum clandestinum). These compounds show anti-neoplastic

effects in a number of systemic malignancies [66], as well

as antifungal and antioxidant activity [135]. Furthermore,

4-methylesculetin, a coumarin derivative, possesses

Fig. 7 Proposed biosynthesis of cyanogenic glycosides
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Table 3 Glucosylation of vitamins

Enzymes Strains Acceptors/donors Products MW

(kDa)

pH Tem

(�C)

References

Glucosidase and

amyloglucosidase

Rhizopus,sweet almond Pyridoxine, (vitamin

B6), ergocalciferol

(D2), thiamin (B1),

riboflavin (B2)/D-

glucose

Variety of pyridoxine

glucosides

4–8 68 [14]

Amyloglucosidase Rhizopus mold Alpha-tocopheryl/D-

glucose

6-O-(D-galacto, gluco,

manno) pyranosyl a-

tocopherol

7 25 [124]

Cyclodextrin

andglycosyltransferase

Paenibacillus

macerans CCTCC

M203062

Ascorbic acid/b-

cyclodextrin

2-O-a-D-glucopyranosyl-

L-ascorbic acid

5.5 50 [186]

b-Glucosidase Sweet almond Retinol/D-glucose, D-

galactose, D-

mannose, D-

fructose, and D-

sorbitol

Retinol glycosides (18-O-

(D-

glucopyranosyl)retinol,

18-O-(D-

fructofuranosyl)retinol,

etc.)

64.6 50 [15]

Cyclodextrin and

glucanotransferases

Saccharomyces

cerevisiae, Bacillus

stearothermophilus,

B. circulans, B.

halophilus

Ascorbic acid/starch,

maltodextrin, c-

cyclodextrin, and

maltose

2-O-a-D-glucopyranosyl-

L-ascorbic acid

5.5–6.0 50–60 [102]

Sucrose phosphorylase Bifidobacterium

longum

L-ascorbic acid/

sucrose

2-O-a-D-glucopyranosyl-

L-ascorbic acid

7.5 37 [89]

Fig. 8 Structure of L-ascorbic

acid glucosides (C) ascorbic

acid-3-O-a-D-glycoside in

which the sugar can be maltose,

chitobiose, cellubiose, etc.
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anti-arthritic and anti-inflammatory properties [47]. Cou-

marin glycosides show better solubility and stability than

their aglycon derivatives and play important roles in

pharmaceutical studies. Isoarnottinin 40-glucoside, a gly-

cosylated derivative of coumarin, has been isolated from

Prangos uloptera (Apiaceae) leaves. This compound

exhibits significant phytotoxic activity against lettuce and

modest cytotoxic activity against the HeLa cell line [131].

In other studies, aviprin and aviprin-300-O-glucoside, two

linear furano coumarin from Apiaceae, show antibacterial

activity, cytotoxic effects, and phytotoxic activity [130,

185]. Therefore, the biosynthesis of coumarin glycosides

has gained much interest in pharmaceutical engineering.

The most popular method to biotransform coumarin is by

cultured plant cells. For example, three novel glycoside

derivatives and four known coumarin compounds can be

produced from Catharanthus roseus cultured suspension

cells [182]. Yu et al. [187] reported glycol diversification

of coumarin glycosyltransferase in transgenic hairy roots of

Polygonum multiflorum using esculetin and various cou-

marin-derived synthetic substrates (Fig. 14). Two new

potential antifungal coumarin glycosides such as 6-chlo-

rocoumarin 7-O-b-D-glucopyranoside and 7-hydroxy-4-

trifluoromethyl-coumarin 5-O-b-D-glucopyranoside were

chemoenzymatically synthesized by the same group. In this

case, the authors found that hairy root cells of P. multi-

florum worked as an independent whole-cell biocatalyst

Fig. 9 Different pyridoxine glycosides were synthesized by b-

glucosidase [14]

Fig. 10 Glycosylated tocopherol derivatives were enzymatically

synthesized by b-glucosidase [124]
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instead of isolating the enzyme and characterizing it using

a traditional method [187].

Glycosylated polyketides as antibiotics

These famous glycosides have been used as antibiotics

including enediyne, polyene, amino glycosides, macro-

lides, and anthacyclines, and about 60 % of the antibiotics

have been found in Streptomyces spp. Many biosynthetic

gene clusters for antibiotics have been discovered and

provide a huge genetic source as well as a genetic base for

functional characterization of particular biosynthetic path-

ways. The development of DNA and protein engineering in

combination with computer-based modeling programs

allows for an increase in the production of target com-

pounds via metabolic engineering and rational design, as

well as to create novel derivatives using combinatorial

biosynthesis and directed evolution. The GTs involved in

the biosynthesis of plant-derived or Streptomyces-origi-

nating secondary metabolites are at the center of biotech-

nological evolution to produce bioactive compounds. Here,

we list an update on glycosides produced as antibiotics

using typical examples.

Polyketides are widely popular secondary metabolites in

plants, bacteria, fungi, and animals. They possess clinically

important properties such as antibacterial, anticancer, and

anti-tumor effects [43, 44]. The core structure of polyke-

tides is usually synthesized via the decarboxylative con-

densation of malonyl-CoA, methylmalonyl-CoA, and

ethylmalonyl-CoA originated extender units in a similar

process to that of fatty acid synthesis. The multi-enzyme

complex responsible for this is called modular polyketide

synthase (PKS) and contains different modules of enzyme

domains and synthesizes each component of the structure

in a stepwise chain assembly [140]. The diversity of

polyketides depends on the structure of the aglycone and

the type of attached sugars.

Streptomyces venezuelae YJ028 is a mutant containing a

deletion of the entire biosynthetic gene cluster encoding

pikromycin PKS and desosamine biosynthetic enzymes.

This strain harbors plasmids that bear various sugar bio-

synthetic pathways and flexible enzymes such as DesVII/

DesVIII and has been used as a host for exogenously

adding tylactone to produce different glycosylated tylosin

derivatives [44]. Similarly, a narbomycin-produced S.

venezuelae YJ003 mutant, containing a deletion of thymi-

dine-50-diphospho-D-desosamine, has been used as a host

after inserting various deoxy-sugar gene cassettes and

glycosyltransferase DesVII. Several narbomycin glycosyl-

ated derivatives have been produced using intracellular

narbornolide and activated sugars (TDP-D-boivinose, TDP-

L-olivose, TDP-L-rhamnose, TDP-D-quinovose, TDP-D-

desosamine, TDP-L-digitoxose, and TDP-3-O-demethyl-T
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D-chalcose) as acceptors and donors, respectively [45].

Using a similar combinatorial biosynthetic approach, those

authors successfully produced various types of glycosyl-

ated rhodomycinones using S. venezuelae YJ028, a mutant

lacking the pikromycin PKS genes and genes for biosyn-

thesis of TDP-D-desosamine, as a host containing a flexible

glycosyltransferase AknS and a TDP-4-ketohexose reduc-

tase, AvrE, which efficiently supports TDP-4-epi-L-daun-

osamine biosynthesis. In addition, a variety of sugar gene

cassettes were used independently to provide glyco-diver-

sified aglycons [43] (Fig. 15).

Mitoxantrone, a polyketide type II anthraquinone, is

famous as an anti-cancer drug for metastatic breast cancer,

acute myeloid leukemia, and non-Hodgkin’s lymphoma

[75, 137]. However, the drug also exhibits some side

effects such as nausea, hair loss, and immune suppression

[138]. Glycosylation of mitoxantrone extends the thera-

peutic window by decreasing cardiotoxicity and enhancing

activity. Thorson et al., succeeded in asymmetric enzy-

matic glycosylation of mitoxantrone to produce mitoxan-

trone 40-b-D-glucoside using a promiscuous engineered

glycosyltransferase derived from the macrolide-inactivat-

ing OleD. This product exhibits high cytotoxicity to dif-

ferent cancer cell lines [188].

Mithramycin is an aureolic acid antibiotic with strong

antitumor activity. It is composed of a tricyclic aglycone

and five deoxysugars that form a disaccharide and a

trisaccharide chain. Several mithramycin derivatives,

which differ in glycosylation patterns, have been pro-

duced from Streptomyces argillaceus by combinatorial

biosynthesis. They show high antitumor activity and less

toxicity in hollow fiber assays and in subcutaneous colon

and melanoma cancers xenograft models [108, 122]

(Fig. 16). In a similar study, the chromomycin CmnA is

an acetyltransferase that attaches two acetyl groups

during chromomycin A3 biosynthesis. This compound

and mithramycin are anthrocyclines but differ in their

glycosylation profiles and functional sugar group substi-

tution. The CmnA has been inserted in the mithramycin-

produced S. griseus mutant and generated a series of

new acetyl-containing mithramycin derivatives with

antitumor activity [36].

Diosgenin

Diosgenin, a derivate of isospirostane, is a compound that

exhibits potent anti-cancer activity [56] and is anti-neo-

plastic and apoptotic in squamous cell carcinoma [26]. In

addition, diosgenyl analogues have been chemically syn-

thesized such as amino acid diosgenyl esters and diosgenyl

salicylate conjugates, which also show anti-cancer and

anti-inflammatory activities [52]. Diosgenin is produced

from Dioscorea zingiberensis C. H. Wright (DZW) tubers

by acid hydrolysis. But, the disadvantage of this method is

the abundant by-products, which cause environmental

pollution. Therefore, much effort has concentrated on

developing a clean and applicable method to produce

diosgenin on a large-scale. Microbial biotransformation

and enzymatic processing are the most useful methods to

convert precursors such as spirostanosides of DZW into

diosgenin by b-glucosidase from Aspergillus fumigates

[93] or the DZW tuber is directly processed through

Fig. 11 Biosynthesis of variety

of hydroquinone glycosides [76]
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Fig. 12 Synthesis of steviosides and rubusosides using different types of glucosidases [28, 112]. G glucose

Fig. 13 Enzymatic synthesis of

4-hydroxy-3-methoxybenzyl-a-

D-glucopyranoside [165]
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enzymatic saccharification and microbial transformation in

Trichoderma reesei under optimal conditions for 156 h

[190]. Process optimization for the production of diosgenin

with T. reesei has been further carried out by response

surface methodology (and the highest diosgenin yield of

90.57 % was achieved under suitable conditions [190].

Additionally, T. harzianum was applied to convert steroidal

saponins into diosgenin and achieved 30.05 ± 0.59 mg/g

diosgenin, which was slightly higher than that obtained

from an acid hydrolysis approach [96]. Dioscin-hydrolyzed

glucosidase has been used as a biocatalyst for diosgenin

synthesis. This is exemplified by the enzyme dioscin-gly-

cosidase, which was isolated from Absidia sp.d38 under

optimal temperature and pH to produce a new dioscin-

glycosidase at 40 �C and pH 5.0, respectively [32]

(Fig. 17).

Table 5 Glucosylation of vanillin

Enzymes Resources or

host

Acceptor/donor Products pH Tem

(�C)

References

Cell suspension

culture

Eucalyptus

perriniana

Biotransformation of

vanillin and

8-nordihydrocapsaicin

as acceptor

Vanillin 4-O-b-D-glucopyranoside; 4-O-b-D-

glucopyranosylvanillyl alcohol;

8-nordihydrocapsaicin 4-O-b-D-

glucopyranoside; 8-nordihydro-capsaicin

4-O-b-D-gentiobioside

[136]

Amyloglucosidase,

b-glucosidase

Rhizopus,

sweet almond

N-vanillyl-nonanamide/

D-glucose, D-galactose,

D-ribose, maltose and

lactose

N-vanillyl-nonanamide-D-glucoside;

N-vanillyl-nonanamide-D-galactoside;

N-vanillyl-nonanamide b-D-mannoside;

N-vanillyl-nonanamide-D-riboside;

N-vanillyl-nonanamidemaltoside;

N-vanillyl-nonanamide b-lactoside

4–8 [146]

Glycosyltransferase Arabidopsis

thaliana, S.

cerevisiae

Vanillin/glucose Vanillin glucoside [46]

a-1,4-Glucosidase S. cerevisiae Vanillyl alcohol/maltose 4-hydroxy-3-methoxybenzyl-a-D-

glucopyranoside

6.6 37 [165]

Fig. 14 Variety of coumarin glycoside derivatives that were synthesized by transgenic hairy roots of Polygonum multiflorum [187]
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Alkyl glucosides and alkyl polyglucoside as surfactants

Alkyl glucosides and their derivatives are eco-friendly

and industrially important non-ionic surfactants with high

surface activity and good biodegradability as well as

foaming control, wetting, detergent, and emulsifying

properties [128]. Alkyl-glucosides are composed of ali-

phatic alcohols and glucose obtained from a renewable

resource. These compounds are used in cosmetic and

hair conditioning agents or as emulsion stabilizers. A

series of synthetic alkyl glucoside vesicles has been used

as a drug carrier [81] or as effective solubilizing agents

for bovine rhodopsin [150]. Chemical synthesis of these

compounds requires several steps and often includes a

mixture of both anomers of two possible cyclic forms of

the glycosides; therefore, it is difficult to obtain a pure

compound [6]. The enzymatic approach is cheap and

effective due to its stereo- and regio-selectivity [98].

Alkyl-b-D-glucosides can be biosynthesized by whole-cell

conversion. For example, the thermo-tolerant Pichia

etchellsii containing b-glucosidase has been used as a

host to produce octyl-b-D-glucopyranoside via trans-glu-

cosylation between p-nitrophenyl b-D-glucopyranoside

and octanol as an acceptor [128]. In another study, the

production of three glycosides using middle chain ali-

phatic alcohols (hexanol and heptanol) was achieved by

reverse hydrolysis catalyzed by defatted meal from

almond, apricot, and peach kernels [6]. A new Dictyo-

glomus-derived b-glucosidase exhibits extremely high

thermostability, was glucose tolerant in aqueous solution,

(A)

(B)

Fig. 15 Structure of tylactone

glycosides (a) and narbonolide

glycosides (b)
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and was glucosylated with n-octanol at 70 �C instead of

50 �C. Thus, this enzyme is promising for synthesizing

various glucosides [191]. Other studies on the synthesis

of hexyl a-glucoside and a-polyglucoside have been

performed with a-glucosidase from Microbacterium

paraoxydans [79, 111] (Table 6) (Fig. 18).

Production of cardiac glycosides

Cardiac glycosides (CGs) are steroids produced by plant

cells and mammalian adrenocortical cells and are widely

used to treat certain forms of cardiac insufficiency. They

are composed of either a C23 (cardenolides) or a C24

(bufadiennolides) genin and sugar moieties. The most

important natural source of these compounds are leaves

from the Digitalis genus (Scrophulariaceae), which con-

tain hundreds of different cardenolide-type glycosides

built up from five types of genins and ten different

sugars [4, 42, 161]. Digoxin and digitoxin have been

extensively used for treating arrhythmias, contractility

disorders, and congestive heart failure [104]. Oubain and

digoxin are strong inducers of P-glycoprotein, a trans-

membrane transporter that extrudes several drugs such as

doxorubicin, and, hence, affects the absorption of drugs

in colon epithelia [133]. Commercial production of CGs

by chemical extraction from natural plants is insufficient.

Therefore, biotechnological approaches have been

applied to improve the product yield. The CG production

has been carried out using plant tissue culture and

extraction. This is exemplified by digoxin and digitoxin

from in vitro shoot cultures of Digitalis lanata using a

temporary immersion system [123]. Another case is the

production of two cardenolides (lanatoside C and

digoxin) from D. davisiana Heywood [41]. Furthermore,

calcium chloride and polysaccharides have been used to

enhance production of total CGs in D. lanata [38]

(Fig. 19).

Future outlook

Studies on small glycosides have been accumulating due

to their broad applications in pharmaceutical, cosmetic,

agriculture, and medicine. A number of novel glycoside

activities have been updated, indicating their importance.

The discovery of new glycosides as natural products

based on chemical extraction, purification, and identifi-

cation from natural sources; enzymatic processing using

advances in protein engineering and DNA recombinant

technology; as well as computer-based modeling

(A) (B)

(C)

Fig. 16 Mithramycin (1) and demycarosyl-3-D-b-digitoxosylmithramycin (2)
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programs has become a main force. We have outlined

some trends and perspectives that are being used pres-

ently as well as in the future. First, efforts have con-

centrated on modifying the aglycon structure and

activated sugars using enzymatic approaches and accu-

mulating knowledge on the biosynthesis of acceptors

such as polyketides, terpenes, flavonoids, vitamins, ste-

roids, and new derivatives of amino sugars, deoxy sug-

ars, and pseudo sugars as donors. Second, exploitation of

promiscuous enzymes has focused on glycosyltransfer-

ases and glycosidases in addition to engineering tech-

niques using site-directed mutagenesis and domain

exchange in combination with high-throughput screening

or other biochemical-based detection systems to recruit

suitable enzymes as biocatalysts. Modeling programs are

critical for studying the interaction between substrates

and enzymes before setting up reactions. Third, diversi-

fication of the glycosylation method such as the devel-

opment of highly tolerant organic solvent micro-

organism strains to produce puerarin glucosides [180]

has significantly improved the solubility of puerarin and

controlled the main product by increasing solvent con-

centration. This is a promising method to scale-up the

production of target compounds by optimizing culture

conditions. Fourth, detection methods for in vitro enzyme

assays such as chemosensors for released NDP (NDP-

sugar) [178] or pH-dependent color assays for high-

throughput screening of both in vitro and in vivo reac-

tions [121] are sensitive, easy, inexpensive and applica-

ble techniques.

Fig. 17 Biotransformation of diosgenin and its derivatives [33, 85, 86]
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(A)

(B)

Fig. 18 Synthesis of alkyl glucoside. R-OH, alcohol; R1, p-nitro-phenyl or monosaccharide (a) and structures of n-hexyl- and n-octyl glucoside

(b) [80]

Fig. 19 Structures of some

typical cardiac glycosides
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